Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation

Edgar Gabriel!, Graham E. Fagg', George Bosilca', Thara Angskun®,
Jack J. Dongarral, Jeffrey M. Squyres?, Vishal Sahay?,
Prabhanjan Kambadur?, Brian Barrett?, Andrew Lumsdaine?,
Ralph H. Castain®, David J. Daniel®, Richard L. Graham?,
Timothy S. Woodall?

! Innovative Computing Laboratory, University of Tennessee,
{egabriel, fagg, bosilca, anskun, dongarra}@cs.utk.edu

2 Open System Laboratory, Indiana University
{jsquyres, vsahay, pkambadu, brbarret, lums}@osl.iu.edu

3 Advanced Computing Laboratory, Los Alamos National Lab
{rhe, ddd, rlgraham,twoodall}@lanl.gov

Abstract. A large number of MPI implementations are currently avail-
able, each of which emphasize different aspects of high-performance com-
puting or are intended to solve a specific research problem. The result
is a myriad of incompatible MPI implementations, all of which require
separate installation, and the combination of which present significant
logistical challenges for end users. Building upon prior research, and in-
fluenced by experience gained from the code bases of the LAM/MPI,
LA-MPI, and FT-MPI projects, Open MPI is an all-new, production-
quality MPI-2 implementation that is fundamentally centered around
component concepts. Open MPI provides a unique combination of novel
features previously unavailable in an open-source, production-quality im-
plementation of MPI. Its component architecture provides both a stable
platform for third-party research as well as enabling the run-time compo-
sition of independent software add-ons. This paper presents a high-level
overview the goals, design, and implementation of Open MPI.

1 Introduction

The evolution of parallel computer architectures has recently created new trends
and challenges for both parallel application developers and end users. Systems
comprised of tens of thousands of processors are available today; hundred-thousand
processor systems are expected within the next few years. Monolithic high-
performance computers are steadily being replaced by clusters of PCs and work-
stations because of their more attractive price/performance ratio. However, such
clusters provide a less integrated environment and therefore have different (and
often inferior) I/O behavior than the previous architectures. Grid and metacom-
puting efforts yield a further increase in the number of processors available to

parallel applications, as well as an increase in the physical distances between
computational elements.

These trends lead to new challenges for MPI implementations. An MPI ap-
plication utilizing thousands of processors faces many scalability issues that can
dramatically impact the overall performance of any parallel application. Such
issues include (but are not limited to): process control, resource exhaustion,
latency awareness and management, fault tolerance, and optimized collective
operations for common communication patterns.

Network layer transmission errors—which have been considered highly im-
probable for moderate-sized clusters—cannot be ignored when dealing with large-
scale computations [4]. Additionally, the probability that a parallel application
will encounter a process failure during its run increases with the number of pro-
cessors that it uses. If the application is to survive a process failure without
having to restart from the beginning, it either must regularly write checkpoint
files (and restart the application from the last consistent checkpoint [1, 8]) or the
application itself must be able to adaptively handle process failures during run-
time [3]. All of these issues are current, relevant research topics. Indeed, some
have been addressed at various levels by different projects. However, no MPI
implementation is currently capable of addressing all of them comprehensively.

This directly implies that a new MPI implementation is necessary: one that
is capable of providing a framework to address important issues in emerging
networks and architectures. Building upon prior research, and influenced by ex-
perience gained from the code bases of the LAM/MPI [9], LA-MPI [4], and
FT-MPI [3] projects, Open MPI is an all-new, production-quality MPI-2 imple-
mentation. Open MPI provides a unique combination of novel features previously
unavailable in an open-source, production-quality implementation of MPI. Its
component architecture provides both a stable platform for cutting-edge third-
party research as well as enabling the run-time composition of independent soft-
ware add-ons.

1.1 Goals of Open MPI

While all participating institutions have significant experience in implementing
MPI, Open MPIT represents more than a simple merger of LAM/MPI, LA-MPI
and FT-MPI. Although influenced by previous code bases, Open MPI is an all-
new implementation of the Message Passing Interface. Focusing on production-
quality performance, the software implements the full MPI-1.2 [6] and MPI-2 [7]
specifications and fully supports concurrent, multi-threaded applications (i.e.,
MPI_-THREAD_MULTIPLE).

To efficiently support a wide range of parallel machines, high performance
“drivers” for all established interconnects are currently being developed. These
include TCP/IP, shared memory, Myrinet, Quadrics, and Infiniband. Support
for more devices will likely be added based on user, market, and research re-
quirements. For network transmission errors, Open MPI provides optional fea-
tures for checking data integrity. By utilizing message fragmentation and striping

Fig. 1. Three main functional areas of Open MPI: the MCA, its component frame-
works, and the modules in each framework.

over multiple (potentially heterogeneous) network devices, Open MPI is capa-
ble of both maximizing the achievable bandwidth to applications and provid-
ing the ability to dynamically handle the loss of network devices when nodes
are equipped with multiple network interfaces. Thus, the handling of network
failovers is completely transparent to the application.

The runtime environment of Open MPI will provide basic services to start and
manage parallel applications in interactive and non-interactive environments.
Where possible, existing run-time environments will be leveraged to provide the
necessary services; a portable run-time environment based on user-level daemons
will be used where such services are not already available.

2 The Architecture of Open MPI

The Open MPI design is centered around the MPI Component Architecture
(MCA). While component programming is widely used in industry, it is only
recently gaining acceptance in the high performance computing community [2, 9].
As shown in Fig. 1, Open MPI is comprised of three main functional areas:

— MCA: The backbone component architecture that provides management ser-
vices for all other layers;

— Component frameworks: Each major functional area in Open MPI has a
corresponding back-end component framework, which manages modules;

— Modules: Self-contained software units that export well-defined interfaces
that can be deployed and composed with other modules at run-time.

The MCA manages the component frameworks and provides services to them,
such as the ability to accept run-time parameters from higher-level abstractions
(e.g., mpirun) and pass them down through the component framework to indi-
vidual modules. The MCA also finds components at build-time and invokes their
corresponding hooks for configuration, building, and installation.

Each component framework is dedicated to a single task, such as providing
parallel job control or performing MPI collective operations. Upon demand, a

framework will discover, load, use, and unload modules. Each framework has
different policies and usage scenarios; some will only use one module at a time
while others will use all available modules simultaneously.

Modules are self-contained software units that can configure, build, and in-
stall themselves. Modules adhere to the interface prescribed by the component
framework that they belong to, and provide requested services to higher-level
tiers and other parts of MPI.

The following is a partial list of component frameworks in Open MPI (MPI
functionality is described; run-time environment support components are not
covered in this paper):

— Point-to-point Transport Layer (PTL): a PTL module corresponds to a par-
ticular network protocol and device. Mainly responsible for the “wire proto-
cols” of moving bytes between MPI processes, PTL modules have no knowl-
edge of MPI semantics. Multiple PTL modules can be used in a single pro-
cess, allowing the use of multiple (potentially heterogeneous) networks. PTL
modules supporting TCP/IP, shared memory, Quadrics eland, Infiniband
and Myrinet will be available in the first Open MPI release.

— Point-to-point Management Layer (PML): the primary function of the PML
is to provide message fragmentation, scheduling, and re-assembly service
between the MPI layer and all available PTL modules. More details to the
PML and the PTL modules can be found at [11].

— Collective Communication (COLL): the back-end of MPI collective oper-
ations, supporting both intra- and intercommunicator functionality. Two
collective modules are planned at the current stage: a basic module imple-
menting linear and logarithmic algorithms and a module using hierarchical
algorithms similar to the ones used in the MagPIe project [5].

— Process Topology (TOPO): Cartesian and graph mapping functionality for
intracommunicators. Cluster-based and Grid-based computing may benefit
from topology-aware communicators, allowing the MPI to optimize commu-
nications based on locality.

— Reduction Operations: the back-end functions for MPI’s intrinsic reduction
operations (e.g., MPI_SUM). Modules can exploit specialized instruction sets
for optimized performance on target platforms.

— Parallel I/0: I/O modules implement parallel file and device access. Many
MPT implementations use ROMIO [10], but other packages may be adapted
for native use (e.g., cluster- and parallel-based filesystems).

The wide variety of framework types allows third party developers to use
Open MPI as a research platform, a deployment vehicle for commercial products,
or even a comparison mechanism for different algorithms and techniques.

The component architecture in Open MPT offers several advantages for end-
users and library developers. First, it enables the usage of multiple components
within a single MPI process. For example, a process can use several network
device drivers (PTL modules) simultaneously. Second, it provides a convenient
possibility to use third party software, supporting both source code and binary

distributions. Third, it provides a fine-grained, run-time, user-controlled compo-
nent selection mechanism.

2.1 Module Lifecycle

Although every framework is different, the COLL framework provides an illus-
trative example of the usage and lifecycle of a module in an MPI process:

1. During MPLINIT, the COLL framework finds all available modules. Modules
may have been statically linked into the MPI library or be shared library
modules located in well-known locations.

2. All COLL modules are queried to see if they want to run in the process.
Modules may choose not to run; for example, an Infiniband-based module
may choose not to run if there are no Infiniband NICs available. A list is
made of all modules who choose to run — the list of “available” modules.

3. As each communicator is created (including MPI_.COMM_WORLD and MPI -
COMM_SELF), each available module is queried to see if wants to be used
on the new communicator. Modules may decline to be used; e.g., a shared
memory module will only allow itself to be used if all processes in the com-
municator are on the same physical node. The highest priority module that
accepted is selected to be used for that communicator.

4. Once a module has been selected, it is initialized. The module typically
allocates any resources and potentially pre-computes information that will
be used when collective operations are invoked.

5. When an MPI collective function is invoked on that communicator, the mod-
ule’s corresponding back-end function is invoked to perform the operation.

6. The final phase in the COLL module’s lifecycle occurs when that commu-
nicator is destroyed. This typically entails freeing resources and any pre-
computed information associated with the communicator being destroyed.

3 Implementation details

Two aspects of Open MPI’s design are discussed: its object-oriented approach
and the mechanisms for module management.

3.1 Object Oriented Approach

Open MPI is implemented using a simple C-language object-oriented system
with single inheritance and reference counting-based memory management us-
ing a retain/release model. An “object” consists of a structure and a singly-
instantiated “class” descriptor. The first element of the structure must be a
pointer to the parent class’s structure.

Macros are used to effect C++-like semantics (e.g., new, construct, destruct,
delete). The experience with various software projects based on C++ and the
according compilation problems on some platforms has encouraged us to take
this approach instead of using C++ directly.

Upon construction, an object’s reference count is set to one. When the object
is retained, its reference count is incremented; when it is released, its reference
count is decreased. When the reference count reaches zero, the class’s destructor
(and its parents’ destructor) is run and the memory is freed.

3.2 Module Discovery and Management

Open MPI offers three different mechanisms for adding a module to the MPI
library (and therefore to user applications):

— During the configuration of Open MPI, a script traverses the build tree
and generates a list of modules found. These modules will be configured,
compiled, and linked statically into the MPI library.

— Similarly, modules discovered during configuration can also be compiled as
shared libraries that are installed and then re-discovered at run-time.

— Third party library developers who do not want to provide the source code
of their modules can configure and compile their modules independently of
Open MPI and distribute the resulting shared library in binary form. Users
can install this module into the appropriate directory where Open MPI can
discover it at run-time.

At run-time, Open MPI first “discovers” all modules that were statically
linked into the MPI library. It then searches several directories (e.g., $HOME/ompi/,
${INSTALLDIR}/1ib/ompi/, etc.) to find available modules, and sorts them by
framework type. To simplify run-time discovery, shared library modules have a
specific file naming scheme indicating both their MCA component framework
type and their module name.

Modules are identified by their name and version number. This enables the
MCA to manage different versions of the same component, ensuring that the
modules used in one MPI process are the same—both in name and version
number—as the modules used in a peer MPI process. Given this flexibility, Open
MPI provides multiple mechanisms both to choose a given module and to pass
run-time parameters to modules: command line arguments to mpirun, environ-
ment variables, text files, and MPI attributes (e.g., on communicators).

4 Performance Results

A performance comparison of Open MPI’s point-to-point methodology to other,
public MPT libraries can be found in [11]. As a sample of Open MPI’s perfor-
mance in this paper, a snapshot of the development code was used to run the
Pallas benchmarks (v2.2.1) for MPI_Bcast and MPI_Alltoall. The algorithms used
for these functions in Open MPI’s basic COLL module were derived from their
corresponding implementations in LAM/MPI v6.5.9, a monolithic MPI imple-
mentation (i.e., not based on components). The collective operations are based
on standard linear/logarithmic algorithms using MPI’s point-to-point message
passing for data movement. Although Open MPTI’s code is not yet complete,

measuring its performance against the same algorithms in monolithic architec-
ture provides a basic comparison to ensure that the design and implementation
are sound.

The performance measurements were executed on a cluster of 2.4 GHz dual
processor Intel Xeon machines connected via fast Ethernet. The results shown in
Fig. 2 indicate that the performance of the collective operations using the Open
MPI approach is identical for large message sizes to its LAM/MPI counterpart.
For short messages, there is currently a slight overhead for Open MPI compared
to LAM/MPI. This is due to point-to-point latency optimizations in LAM/MPI
not yet included in Open MPI; these optimizations will be included in the release
of Open MPI. The graph shows, however, that the design and overall approach
is sound, and simply needs optimization.

100000

Fig. 2. Performance comparison for MPI_LBCAST and MPI_ALLTOALL operations in
Open MPI and in LAM/MPI v6.5.9.

5 Summary

Open MPI is a new implementation of the MPI standard. It provides function-
ality that has not previously been available in any single, production-quality
MPI implementation, including support for all of MPI-2, multiple concurrent
user threads, and multiple options for handling process and network failures.
The Open MPI group is furthermore working on establishing a proper legal
framework, which enbales third party developers to contribute source code to
the project.

The first full release of Open MPI is planned for the 2004 Supercomputing
Conference. An initial beta release supporting most of the described functionality
and an initial subset of network device drivers (tcp, shmem, and a loopback
device) is planned for release mid-2004. http://www.open-mpi.org/

Acknowledgments

This work was supported by a grant from the Lilly Endowment, National Sci-
ence Foundation grants 0116050, ETA-0202048, ETA-9972889, and ANI-0330620,
and Department of Energy Contract DE-FG02-02ER25536. Los Alamos National
Laboratory is operated by the University of California for the National Nuclear
Security Administration of the United States Department of Energy under con-
tract W-7405-ENG-36. Project support was provided through ASCI/PSE and
the Los Alamos Computer Science Institute, and the Center for Information
Technology Research (CITR) of the University of Tennessee.

References

1. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Neri, and A. Selikhov. MPICH-V:
Toward a scalable fault tolerant MPI for volatile nodes. In SC’2002 Conference
CD, Baltimore, MD, 2002. IEEE/ACM SIGARCH. pap298,LRI.

2. D. E. Bernholdt et. all. A component architecture for high-performance scientific
computing. Intl. J. High-Performance Computing Applications, 2004.

3. G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, A. Bukovski, and J. J.
Dongarra. Fault tolerant communication library and applications for high perofr-
mance. In Los Alamos Computer Science Institute Symposium, Santa Fee, NM,
October 27-29 2003.

4. R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalksi. A network-failure-tolerant message-
passing system for terascale clusters. International Journal of Parallel Program-
ming, 31(4):285-303, August 2003.

5. T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang. Mag-
Ple: MPTI’s collective communication operations for clustered wide area systems.
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’99), 34(8):131-140, May 1999.

6. Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org.

10.

11.

Message Passing Interface Forum. MPI-2: Extensions to the Message Passing In-
terface, July 1997. http://www.mpi-forum.org.

Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason
Duell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint /restart frame-
work: System-initiated checkpointing. International Journal of High Performance
Computing Applications, To appear, 2004.

Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for
LAM/MPL. In Proceedings, 10th European PVM/MPI Users’ Group Meeting, num-
ber 2840 in Lecture Notes in Computer Science, Venice, Italy, Sept. 2003. Springer.
Rajeev Thakur, William Gropp, and Ewing Lusk. Data sieving and collective I/O
in ROMIO. In Proceedings of the Tth Symposium on the Frontiers of Massively
Parallel Computation, pages 182—189. IEEE Computer Society Press, Feb 1999.
T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E. Fagg,
E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, and A. Lumsdaine. TEG: A high-performance, scalable, multi-
network point-to-point communications methodology. In Proceedings, 11th Euro-
pean PVM/MPI Users’ Group Meeting, Budapest, Hungary, September 2004.

